

TATA MOTORS Connecting Aspirations

TATA MOTORS LTD. CVBU PUNE

TEAM:

Mr. Milind Mench (DGM, Central Plant Engg. Div.)

TIATIA MOTORS

Mr. Mandar Pande (Sr. Mgr., Central Maintenance)

Mr. Manoj Badave (Sr. Mgr., Central Plant Engg. Div.)

ΤΛΤΛ

MAY

1. Brief introduction on Company/Unit

Our Purpose We Innovate Mobility Solutions With Passion To Enhance Quality of Life SCV AND PICKUP MHCV INTERNATIONAL Signa Prima Ace EV New Intra Xenon X2 **BUSES AND VANS** Yodha 2.0 Ace Prima Euro 5 Range Magic Ambulance Winger ILCV Ultra **Tata 407** Starbus Ultra EV

1. Manufacturing Process

TATA Motors Ltd., CVBU, Pune

3. Energy Consumption Overview

Process wise Electrical Energy Consumption FY2023 - 24

Overall Energy Consumption and Production Data FY2023-2024

TATA Motors Ltd., CVBU, Pune

3. Specific Energy Consumption in Last 3 Years - Thermal

TATA Motors Ltd., CVBU, Pune

3. Specific Energy Consumption in Last 3 Years - Thermal

4. Information on Competitors, National & Global Benchmark

Note: Data as per CII Presentation

4. Information on Competitors, National & Global Benchmark

Note: Data as per CII Presentation

TATA Motors Ltd., CVBU, Pune

4. Information on Competitors, National & Global Benchmark

Global Benchmark

TATA Motors CVBU Pune Energy performance information on national competitors is mentioned above. Global competitor performance comparison is difficult due to following aspects:

- Apple to apple comparison is very difficult to compare
- Manufacturing models are different, e.g. in CVBU Pune, we are having all manufacturing processes
- Climatic conditions are variable according to geographical locations

Roadmap to achieve Benchmark / Global Best :-

TATA Motors CVBU Pune Plant will continue to refine all process to achieve Benchmark Level.

To Sustain the Best Achieved Level :-

We are following robust process of assessment of performance vis-à-vis comparative information / benchmark from different organisation and standards.

Roadmap :-

- □ Intelligent management- **Optimum and effective use of Resources**
- □ IOT / Machine management through **Digitization** KT2 / Adopt Latest Technology
- Lean manufacturing and Processes Management Innovations
- Clean resources Maximise Renewable Energy
- GHG Management **Reduce Carbon Footprint**
- Real-time Monitoring and analysis at shop floor

4. List of Major EnCon Projects Planned 2024-25

Sr. No	EnCon Projects_FY24-25	Category	Budget in Lac	Saving in Lac
1	Ceramic coating for CCHF Furnace.	New Technology	14.04	19.7
2	Polishing booth draft optimization by reducing frequencies and optimization of supply and Exhaust.	Optimaization	0	11.03
3	KT2 Implementation Heat Treatment Area – Furnace optimization	Optimaization	25	20
4	Optimization of Ventilation ASU no 3 during PTCED Production and recess period by Logic modification-	Optimaization	0	3.7
5	HVLS Installation ICV Factory.	New Technology	2	1.4
6	KT2 implementation Eng. factory	New Technology	12.3	15.1
7	KT2 implementation Press factory	New Technology	12.3	15.1
8	KT2 implementation ICV/LCV/Xenon/Winger factory	New Technology	12.3	15.1
9	KT2 implementation Axle Factory	New Technology	12.3	15.1
10	HVLS Installation LCV /ICV/Winger/Engine Factory	New Technology	8	5.6
11	Quadsun Heat Pump Project implementation - Paint shop PTCED Process tank heating (Capex Project) - WIP	New Technology	450	142
12	Paint shop – Pneumatic to electric conversion for Paint kitchen area (Capex Project) 2 nos of Pumps Planned .	New Technology	60	18
13	Complete working on Sunday/Holiday to be stopped – Non Working Day Consumption Reduction. Quick Fix idea	Optimaization	NA	3.6
14	APL CAD room centralized A/c system optimization	Replacement		

Year	No. of Energy Saving Projects	Investment (Rs. Million)	Total Savings (Rs. Million)	Payback Period (Months)
2021-22	12	10.1	24	4
2022-23	9	6.8	19.4	4
2023-24	15	5.1	21.4	3
Total	36	22	64.8	4

Sr. No	. Project Description	Location/Factory	Idea Related to Power/Fuel	Levers for ENCON Projects	Energy Saving (kWh/ Annum)	Annual Power Saving (Rs. Lakhs)	Investment (Rs. Lakhs)	Remarks
	Installation of VFD at 2000 T Press Shop	Press Shop E Block	Power	Operational Efficiency	67,710	5.6	2.9	
1	Installation of VFD at Hitachi Conveyer	Press Shop E Block	Power	Operational Efficiency	24,156	2.0	1.1	
	Installation of VFD at Paint shop blower	Paint shop J block	Power	New technology introduction	11,712	1.0	0.6	
2	Engine Paint booth Elimination	H 8 Engine	Power	Energy cost	20,130	1.7	-	Process change
3	Ventilation ASU Switching off in Recess Period /After production hrs (Paint Shop) –	J11 -12 Paint Shop	Power	Digitalization (KT 02) and process automation (KT 04)	39,650	3.3	-	Implementation based on insights from Ind.4.0 project
4	Process change in heat treatment area for box furnace CCHF04 -	J11 -12 Paint Shop	Power	Digitalization (KT 02) and process automation (KT 04)	3,75,150	30.8	-	use manpower & erial utilized
_	Down sizing of Motor FSB08 Milling machine 10.5 Kw to 5.5.Kw	Axle Factory	Power	Operational Efficiency	13,420	1.1	Appro	ox. 13 Lakh
5	Down sizing of Motor FS011 Motor 5.5. Kw to 3.7 Kw	Axle Factory	Power	Digitalization (KT 02) and process automation (KT 04)	9,150	0.8	kW	h Annual used
6	Lighting and Man cooling Fan control During races time – Hardware Modification Done in Winger Factory BIW Line - Done	Winger Line	Power	Energy cost	19,825	1.6	Ac	chieved
7	Optimization and Consumption Control for Chassis /Assembly/Aggregate shop in CVBU Pune	All Factories	Power	Measurement & Analysis		-	-	

Sr. No	. Project Description	Location/Factory	Idea Related to Power/Fuel	Levers for ENCON Projects	Energy Saving (kWh/ Annum)	Annual Power Saving (Rs. Lakhs)	Investment (Rs. Lakhs)	Remarks
	Nexon, Punch, Altroz painting in DTG colour shifting from 3C2B to 3C1B	J11 -12 Paint Shop	Power	Digitalization (KT 02) and process automation (KT 04)	3,88,800	31.9	-	Process optimization
8	Nexon, Punch, Altroz painting in PSW colour shifting from 3C2B to 3C1B	J11 -12 Paint Shop	Power	Digitalization (KT 02) and process automation (KT 04)	1,87,200	15.4	-	Process optimization
	Winger painting in PRW colour shifting from 3C2B to 3C1B	J11 -12 Paint Shop	Power	Digitalization (KT 02) and process automation (KT 04)	39,600	3.2	-	Process optimization
9	Start-up loss of 2 cycles avoided in PTCED	J11 -12 Paint Shop	Power	Digitalization (KT 02) and process automation (KT 04)	24,000	2.0	-	Process optimization
	HVLS Fan installation E8 ICV Factory	ICV Factory	Power	New technology introduction	34,160	2.8	2.0	
	HVLS Fan installation LCV Factory	LCV Factory	Power	New technology introduction	34,160	2.8	2.0	
10	HVLS Fan installation Fan Installation H7 Engine Factory	Engine Factory	Power	New technology introduction	34,160	2.8	Appro	ox. 13 Lakh 🛛 🖌
	HVLS Fan installation Fan Installation Axle Factory - H4 Area	Axle Factory - Pimpri	Power	New technology introduction	17,080	1.4	kW	h Annual
	HVLS Fan installation Fan Installation Axle Factory -DD1 Area	Axle Factory - Chinchwad	Power	New technology introduction	17,080	1.4	Ener ۵	gy Saving
	HVLS Fan installation Fan Installation Axle Factory - RATP Area	Axle Factory - Pimpri	Power	New technology introduction	17,080	1.4	2.0	
Total					13,74,223	112.69		

Sr. No	. Project Description	Location/Factory	Idea Related to Power/Fuel	Levers for ENCON Projects	Energy Saving (SCM/ Annum)	Fuel Cost Saving (Rs. Lakhs)	Investment (Rs. Lakhs)	Remarks
11	Sealant Oven temperature reduced by 5 Deg (Paint Shop)–	J11 -12 Paint Shop	Fuel	Digitalization (KT 02) and process automation (KT 04)	9,150	4.2	-	Implementation based on insights from Ind.4.0 project
12	Sealant Oven temperature Auto off Deg (Paint Shop)–	J11 -12 Paint Shop	Fuel	Digitalization (KT 02) and process automation (KT 04)	8,235	3.7	-	Implementation based on insights from Ind.4.0 project
13	HBL 209 Machine Fuel Saving Project (Elimination NG)	Engine Factory	Fuel	Energy cost	12,200	5.5	-	Process change
	Nexon, Punch, Altroz painting in DTG colour shifting from 3C2B to 3C1B	J11 -12 Paint Shop	Fuel	Digitalization (KT 02) and process automation (KT 04)	1,32,840	60.3	-	Implementation based on insign s from Ind.4.0 project
14	Nexon, Punch, Altroz painting in PSW colour shifting from 3C2B to 3C1B	J11 -12 Paint Shop	Fuel	Digitalization (KT 02) and process automation (KT 04)	63,960	200	Appro	ation based on Dx. 2.4 Lakh
	Winger painting in PRW colour shifting from 3C2B to 3C1B	J11 -12 Paint Shop	Fuel	Digitalization (KT 02) and process automation (KT 04)	13,530	6.1	SC Fu	M Annual d on el Saving
15	Start-up loss of 2 cycles avoided in PTCED	J11 -12 Paint Shop	Fuel	Digitalization (KT 02) and process automation (KT 04)	4,932	2.2	A	chieved 1 Ind.4.0 project
Total					2,44,847	111.16		

TATA Motors Ltd., CVBU, PuneCII - 25th National Award for "Excellence in Energy Management-2024"

6. Innovative Project 1 - Separation of Carburizing and Hardening process from main furnace CCHF4

Operation	Problem	Root Cause	Measures Taken	Result
Synchro Components Heat Treatment	The heavy power loss due to delay in material availability of Synchro components at CCHF-4.	The Production plan for GB-40 reduced from 300-400 to only 40-80 per month.	The Carburizing of the components to be done at Seal Quench Furnaces and Hardening to be done at Small Hardening Furnace.	 1.Power consumption reduced from 3100 Units to 1870 Units per day (Saving of 1230 Units per day) Rs. 41.84 lacs per year 2. Productivity improved from 140 to 168 per shift 3. LPG consumption reduction up to 40 Kg per day
	Before			After
				<image/>

TATA Motors Ltd., CVBU, Pune CII - 25th National Award for "Excellence in Energy Management-2024"

6. Innovation 2: Process Optimization for Porcelain White & others Colours by Shifting from 3C2B to 3C1B on Various Cabs

6. Innovation No 3 – Heat Treatment Digitization Project (Process Innovation)

Deliverables Through The Master KIOSK and Intranet IoT Devices:

- 1. Online monitoring of the energy consumption of the individual furnaces Group-wise and individual Zone-wise.
- 2. Data entry from the Furnace data Sheet enables the analysis of the data with respect to the plant variables like KWH/ Kg and KWH / SMH.
- 3. Calculation of the per Kg consumption, Furnace Utilization (Furnace losses like start Up loss, Shutdown Loss, Set Up change loss)

Benefits:

- 1. Close monitoring of the furnace parameters.
- 2. Shutdown and Start Up losses reduced by 4 hours
- 3. Minor stoppages reduced to zero
- 4. Furnaces power consumption reduction.

TATA MOTORS Connecting Aspirations

6. Innovation No 3 – Heat Treatment Digitization Project (Process Innovation)

7. Utilization of Renewable Energy Sources

Renewable energy generation, utilization and % of Overall Energy consumption

Onsite Generat	ion			
Year	Technology (solar/wind/biomass etc)	Installed Capacity (MW)	Consumption (million kWh)	% of overall electrical energy consumption
2021-22	Solar	4.8	4.42	4.33%
2022-23	Solar	4.8	5.78	6.2%
2023-24	Solar	7.8	8.58	9.3%
Offsite Generat	tion			
Year	Technology (solar/wind/biomass etc)	Installed Capacity (MW)	Consumption (million kWh)	% of overall electrical energy consumption
2021-22	Wind & Solar	21.95 + 18 +17	35.55	34.84%
2022-23	Wind & Solar	21.95 + 42.25 + 25.36	50.5	54%
2023-24	Wind & Solar	21.95 + 15 + 39.36	45.4	54%

TATA Motors Ltd., CVBU, Pune

7. Utilization of Renewable Energy Sources

TATA Motors Ltd., CVBU, Pune

8. GHG Inventorisation:

TATA Motors Ltd., CVBU, Pune

9. Waste utilization and management

	True of works	2021-2022	2022-2023	2023-2024	
Νο	generated	Quantity of waste generated (MT/year)	Quantity of waste generated (MT/year)	Quantity of waste generated (MT/year)	Disposal method
1	Grinding sludge	109.10	81.36	23.74	Landfill after treatment
2	Phosphating sludge	24.83	41.45	35.26	Landfill after treatment
3	Paint sludge hazardous kachara	265.35	381.62	455.88	Incineration
4	Waste oily Scum	32.08	14.86	49.56	Incineration
5	Spent Resin	0.35	2.04	0.7	Incineration
6	Asbestos	5.52	0.4	2.8	Landfill
7	Glass wool	1.96	2.22	1.15	Landfill
8	Chimney soot	0.00	0.06	0	Incineration
9	FRP Waste	1.26	1.62	12.56	Landfill
10	Shot blasting dust	6.90	12.26	9.4	Landfill after treatment

9. Waste utilization and management

		2021-2022	2022-2023	2023-2024	
No	Type of waste generated	Quantity of waste	Quantity of waste	Quantity of waste	Disposal method
		generated (MT/year)	generated (MT/year)	generated (MT/year)	
11	ETP-Industrial sludge	862.84	348.7	162.96	Landfill after treatment Through Authorised MPCB
12	ETP-Domestic sludge	13.70	0.1	6.18	Landfill after treatment
13	Nickel + Al catalyst	0.9	0.1	0	Landfill
14	ERC pattern waste	10.16	20.48	26.96	Incineration
15	HFO sludge	0	0	0	Incineration
16	Door, Roof liner	3.58	5.4	16.07	Landfill
17	Broken Tube lights	1.12	1.0	0.68	Landfill after treatment
18	Paint sludge - MPCB Regd. Re-cycler	50.06	65.98	28.84	Recycle
19	Paint sludge - MPCB Regd. Re-cycler	119.54	36.74	0	Recycle
20	Paint sludge - MPCB Regd. Re-cycler	0	62.04	21.08	Recycle

TATA Motors Ltd., CVBU, Pune

9. Waste utilization and management

	Actions/ Initiatives implemented	Expected outcome	Benefits
	Commissioned Static Pile composting at Chinchwad Plant to manage the food waste generated from the canteen.	Disposal as per Zero Waste to Landfill (ZWtL) commitment. Deriving the food waste to Manure.	Generated around 1.80 MT of organic manure. The same was utilized in managing the landscaping area within Chinchwad plant.
	Installation of canteen waste composting for Pimpri Plant using advanced de-hydra and waste composter to handle up to 3 MT of food waste per day.	Disposal as per ZWtL commitment. Deriving the food waste to Manure.	The final compost of around 750 Kg per day of organic manure is expected to be generated from July 2024. The same will be used as manure for managing the landscape at plant and lake house area.
Waste	Sustainable solution for Sludge Drying-Removal of excess moisture from the hazardous waste such as ETP sludge, Paint sludge, Phosphate sludge etc., using enhanced solar sludge drying bed.	Reduced volume of waste and saving in the disposal cost.	Effective July 24, the enhanced solar sludge drying bed will be in operation and it is expected to save around 15 to 20% of overall hazardous waste disposal quantity.
	Diversion of Hazardous Waste such as ETP sludge, Paint sludge, Phosphate sludge, oily rags, used oil etc., to acceptable disposal route such as recycling and or towards co-processing as alternate fuel and alternate raw material.	Disposal as per ZWtL commitment.	To achieve ZWtL target. Saving in Waste Disposal Cost.
	Water Conservation- Elimination of underground water leakage. Replacement of old underground water supply pipeline with new above ground pipeline to avoid water leakage at E Block area.	Water conservation measures leading to resource conservation.	Water saving 200 KLD being achieved.
	Installation of digital water meters at CVBU Pimpri Plant.	Industry 4.0 online water monitoring system.	Real time data analysis & monitoring. Saving water consumption
Water	Existing performance evaluation of ETP/STP and design of New process water pipeline & waste water recycling system (UF/RO)	Water Neutrality project to improve Net water Ratio by end of FY 25.	Achieve water neutrality from existing 0.12 to 0.65 by March 2025. The design and development work have already been initiated.
	Upgradation of the site water and wastewater laboratory	In situ capability of analyzing the key water and wastewater parameters and based on the results immediate corrective actions can be taken.	Daily monitoring of the key wastewater parameters will be carried out to understand the performance of the Effluent and Sewage treatment plant.

9. Waste utilization and management – Sludge Dewatering

TATA Motors Ltd., CVBU, Pune CII - 25th National Award for "Excellence in Energy Management-2024"

9. Waste utilization and management – Sludge Dewatering

Sustainable Technology for ETP Sludge Dewatering

Sr. No.	Benefits of Volute Sludge Dewatering Screw Press
1	Very low power consumption as compared to centrifuge dewatering unit. For Centrifuge 24hr Operation Require 288 Unit/Day For Screw Press 24hr Operation Require 31.2 Unit/Day Saving in energy 256.8 Kw/Day Reduction in CO2 emission
2	Low space require to store dewatered sludge in sludge drying beds. Eliminate ETP sludge draining issue in rainy season permanently.
3	Reduced sludge drying beds maintenance & revamping cost.
4	Minimum time require to dry the ETP/STP dewatered sludge. Moisture contain before dewatering- 95-97% Moisture contain after Dewatering- 65-75%

9. Waste utilization and management – Sludge Drying with Solar Concentrators & Heat Pump

9. Waste utilization and management - Canteen Waste Management

TATA MOTORS Connecting Aspirations

TATA Motors Ltd., CVBU, Pune

Operat	ion	Problem		Measures Taken		Result
Utensil wa area	 Utensil washing area There is no control for flow of washing of utensils. 		water while	Gun having jet formation facility p controlling flow of water as per re	provided for quirement.	Water saving.
There is no flow of wa washing or	control for ater while f utensils.			spray gun attached at H 8 canteen area	Gun ha formation provi	ving jet n facility ided
Operation		Problem		Measures Taken		Result
Operation Engine Testing 	 In bed contin draina 	Problem no 32 water is overflowing uously due to choke up in the ge pipe	Choke fitted to the dra	Measures Taken up removed of bed no 32 and plate avoid any waste from going inside inage pipe.	 In bed no normally chamber. 	Result 32 water is flowing through circulation

Operation	Problem	Measures Taken	Result			
• Engine • Test Bed	In test bed no 12 water mixing tank 3 water connection is present due to which wastage of water from overflow.	Extra water connection plugged.	 Water wastage due to overflowing eliminated. 			
In test bed no mixing tank connection is	12 water 3 water present	WATER MIXING TAHK	Extra water connection plugged			
Operation	Problem	Measures Taken	Result			
Hand wash at Toilet	Water wastage while washing of hands due to excess flow of water at high pressure.	Flow control washer used before the push taps reducing flow of water.	Water consumption reduced.			
Water wastage due to excess flow of water at high pressure Image: Control washer used before taps reducing flow of water						

10. Green Supply Chain Management

Our Environmental Procurement Policy aims at:

- Awareness of TML Environmental Policy & Code of Conduct amongst suppliers;
- Environmental performance evaluation and priority to "Green Suppliers";
- Encouraging suppliers to improve environmental performance and implement EMS;
- Reduce carbon footprint and use of hazardous substances;
- Minimize logistics and packaging material and maximize reuse and recycling packaging materials and use of recycled materials.

Supplier Evaluation Guidelines

Communication of Policies, TCoC and Sustainability Guidelines & data templates to suppliers

Training and capacity building of suppliers and R & SQ teams on sustainability

> Monitoring and assessment of suppliers through data collection, site audits

> > Recognition of suppliers

Sustainability Guidelines for Suppliers

cover the following key topics:

- ✓ Governance
- ✓ Legal Compliance
- ✓ Tata Code of Conduct
- ✓ Management System Certifications
- ✓ Environment & Climate Change
- ✓ Health & Safety
- ✓ Labor & Human Rights
- ✓ Transparency & Reporting

10. Green Supply Chain Management

Baseline and target for reduction of Supplier's Resources Consumption

Year on Year Reduction Targets for suppliers :

Parameter Short Term		Medium Term	Long Term	
Energy, Water, Waste	3%	5 %	5-10 %	

10. Green Supply Chain Management

Sustainability Guidelines for Suppliers :-

<u>11. EMS and Other Requirements – EMS Organization</u></u>

Energy Mgmt. Team – Chaired by Plant Head

TATA Motors Ltd., CVBU, Pune

<u>11. EMS and Other Requirements – EMS Data Acquisition Architecture</u>

TATA Motors Ltd., CVBU, Pune CII - 25th National Award for "Excellence in Energy Management-2024"

<u>11. EMS System and Other Requirements – EMS Dashboards</u>

Dashboard for Power Consumption Performance

<u>11. EMS System and Other Requirements – Analytics Dashboard</u>

DWM – Compressed Air Loss and Equivalent Vehicles

<u>11. EMS System and Other Requirements – EMS Review by Plant Head</u></u>

TATA Motors Ltd., CVBU, Pune

<u>11. EMS System and Other Requirements – EMS Review by Plant Head</u></u>

<u>11. EMS System and Other Requirements – Daily Rooftop Solar Generation Review</u></u>

<u>11. EMS System and Other Requirements – Green Certifications</u>

	ISO50001 Certifie	GreenCo Certification	
Bureau Veritas Certification	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	 In 2023-24 we have successfully completed the first surveillance audit of ISO50001:2018. We have transitioned from ISO:50001:2011 version to ISO:50001:2018 version in Dec. 2020 The ISO 50001-2018 standard helped in emphasizing the need for awareness on below aspects: Future energy planning Risk Identification and assessment Understanding needs and expectations (Internal/External Stakeholder) Standardized process of evaluation of legal and other requirement External Issues / Internal Issues. Summary- One of the most valuable aspects of the energy management system is a structure that allows plant energy managers to share their challenges, successes, and concerns. Sharing updates and best practices in an open forum provides fertile ground for identifying and leveraging opportunities especially with multiple plants in operation. 	Image: System

TATA Motors Ltd., CVBU, Pune

CII - 25th National Award for "Excellence in Energy Management-2024"

11. EMS System and Other Requirements – Life Cycle Assessments (LCA)

Life Cycle Assessment

- Tata Motors conducts thorough Life Cycle Assessments (LCAs) to evaluate the environmental impacts of our products.
- Adhering to <u>ISO 14040 and ISO 14044</u> standards, the LCA approach comprehensively evaluates the total environmental impacts or ecological burden arising from the entire lifecycle of our products.
- We have completed <u>Cradle to Gate</u> calculations, commonly referred to as supplier emissions, for our <u>SCV & LMCV</u> range of vehicles.

<u>11. EMS System and Other Requirements – Automatic Power Factor Correction</u>

	Installed Panel Summary 2024							
Sr. No.	S/S No.	Panel Make	Quantity	KVAR	Working KVAR May	Working KVAR June		
1	1	APFC SMASH	1	500	400	400		
2	41	APFC ASIAN	1	400	400	400		
3	31,27,26,10,16,28, 21,59,61,30,,48,45	APFC MEHER	12	6750	6750	6750		
4	7,42,14,29,	APFC MADHAV	4	1600	1600	1600		
5	50,13,39,8	TSC ABB	4	1670	1280	1280		
6	12,38,20,6	P2P	4	2200	2200	2200		
7	23,22,60,51,52,53,54,55	TSC POWERDEAL	8	4250	4080	4080		
8	46,36	EPCOS	2	1200	1070	1070		
9	19,11,62,64	TAS POWERTEK	4	1970	1960	1960		
		TOTAL	40	20540	19740	19740		

			Ta
Driving Net Zero	Pioneering circular economies	Preserving nature and biodiversity	wo
Products driven → PV by 2040. CV by 2045 Operations driven → Sourcing 100% renewable electricity by 2030 Following science-based approach for emissions reduction	Operational circularity → Zero Waste to Landfill by 2030 → Water Neutral by 2030 and Water Positive by 2040 Product circularity	 → Aligning to Global Biodiversity Framework → Aligning to science to map and set targets across our value chain → Taking up flagship projects for Nature-based-Solutions 	po rei Drivi At Tate compo

framework for reducing greenhouse has emissions and is

committed to achieve net zero emissions by 2045 for CV.

Tata Motors CVBU Pune is working on <u>RE100</u> project and committed to meet 100% of its power requirement from renewable sources by <u>2030</u>.

Driving decarbonisation with renewable power

At Tata Motors, decarbonisation in operations will be primarily driven by ransitioning to renewable energy sources. We are collaborating with power companies to drive our renewables initiatives forward.

12. NET ZERO commitment – CVBU Pimpri Plant Sustainability

Cost leadership team CLT

CLT Utilities	Utilities: Power & Fuel	
(Cost leadership		
team)	Started: 2018	

Current scope : Jamshedpur plant – Manufacturing, Pune – CV , Lucknow, Pantnagar and Dharwad , Foundry JSR & Pune,

Lead Plant : TML Pantnagar, CLT Chairman – Plant Head – TML Pantnagar

Cost Leadership Team Review Mechanism

- Plant Energy performance at CV level
- EnCOn projects progress review
- Energy dash board review of each plant
- Respective plant energy performance review
- Manuf. & Non- Manf. Energy review
- Projects review
- Factory energy performance review
- Operational controls
- Daily monitoring, analyses & action
- Plant coordination for implementation of EnCon projects
- Data management and performance tracking
- Coordination among other CLT members for cross learnings and projects implementation
- Benchmarking

CLT : Levers for idea generation

- > DWM Allocation of MP & CP at each level
- Leveraging real time data (Energy digitization) and Energy analytics
- Implementation of KT2
- > Energy audit and significant load/ process selection for power and fuel
- > Process Automation & process modification to achieve higher efficiency
- > Heat pump, BLDC motors, High efficiency Fans etc
- > Roadmap for RE & Energy saving
- > Benchmarking and leveraging inputs from different national forums like CII, Golden Peacock, BEE etc.
- > Open Access
- > Load management based on ToD $\,$ (Time of day) tariff
- > Sharing of best practices and processes

			Idea recording sheet on flip chart / Excel sheet					
Team	No:			-				
SI No	ldea Descripti	ion		Cat	Applicability Plant/Shop/area	Impact Rs/units	Long Term/ Short Term	Investment Yes/NO
:	1							
	2							
:	3							
	4		Category / Lever	1	I	Ι	Code	
		1	Measurement & A	nalyses	3		M&A	
		2	Operational Efficie	ency		OE		
(6	3	Renewable energy	/			RE	
	7	4	New Technology/ I	Innovat	ion		Newtech	
		5	Benchmarking & A	Adoptio	n of Best Practice	s	BM	
	8	6	Commercial energy cost saving				COST	
		7	Knowledge and ca	pability	lity building		K&CB	
:		-	Any other Points T	eam w	ant to put forward.		OTHER	
10	b							

NATIONAL AWARD

FOR EXCELLENCE

IN ENERGY MANAGEMENT

Excellent Energy

Efficient Unit

CII

aLEnergy

13. Award and Recognition, Employee Involvement & Knowledge Sharing

Tata Motors CVBU Pune WINS NATIONAL ENERGY LEADER AWARD

Awards and Recognitions:

- Tata Motors CVBU Pune participated in the competition for the 24th National Award for Excellence in Energy Management, 2023 conducted by Confederation of Indian Industry (CII).
 It won TWO awards:
- NATIONAL ENERGY LEADER AWARD
- EXCELLENT ENERGY EFFICIENT UNIT AWARD.

TATA MOTORS CVBU Pune has won the National Energy Leader Award for the 6th Consecutive erender Forenge Bader Arta MotoRs CvBU Mue has won the National Bergy Leader Award for berg Leader Award

Excellent Energy Efficient Unit

AUTOMOBILE

Tata Motors Limited, CVBU, Pune

snal Award for 2023

year

13. Award and Recognition, Employee Involvement & Knowledge Sharing

Godrej & Boyce Mfg Co.

It was great to interact with such a dynamic team to pursue the learning. I also want to extend the invitation to Visit our manufacturing facilities any time with your team.

Mukesh Suthar AGM & Head – Energy Management & Sustainability

13. Award and Recognition, Employee Involvement & Knowledge Sharing

Energy Week Celebration Dec. 2023

NATIONAL ENERGY CONSERVATION WEEK PLEDGE

TODAY, ON THE OCCASION OF 'NATIONAL ENERGY CONSERVATION WEEK', I SOLEMNLY PLEDGE, TO CONSERVE ALL FORMS OF ENERGY USED BY ME, AT MY WORKPLACE, IN MY NEIGHBORHOOD, AND AT HOME.

I RE-AFFIRM MY COMMITMENT TO-

- 1. AVOID WASTAGE OF ENERGY, BY FOLLOWING DISCIPLINE IN SWITCHING OFF MACHINES/EQUIPMENTS, WHEN NOT IN USE.
- 2. IDENTIFY COMPRESSED AIR LEAKAGES AND WORK TO RECTIFY THEM
- 3. SWITCH OFF LIGHTS, FANS, A/C'S, COMPUTERS ETC WHEN I AM THE LAST PERSON TO LEAVE THE WORKPLACE
- 4. MAXIMIZE USE OF RENEWABLE ENERGY WHEREVER FEASIBLE
- 5. CREATE AWARENESS ON ENERGY CONSERVATION AMONG FAMILY, FRIENDS AND NEIGHBORS

I ALSO PLEDGE, TO WORK CONTINUALLY TO IMPROVE OUR SPECIFIC ENERGY CONSUMPTION, WHICH WILL REDUCE OUR GREENHOUSE GAS EMISSIONS AND ENERGY COST.

	USS (Unique Suggestion Scheme) – 205 on					
	Energy Conservation is Launched !					
All						
PNCV_USS@205_2	23-24_09	December 14, 2023				
Subject		USS (Unique Suggestion Scheme) : 205				
Scope		Pune CVBU Plant (including Maval)				
Applicable to		Permanent / Probationers / Fix Term / Temp / Trainee Employees on TML Pay Roll				
Period of USS		December 14, 2023 to December 31, 2023				
USS Focus Areas		Topics on which the Fresh/ Implemented suggestions can be submitted :				
		 Reduction in energy consumption by change in process, 				
		 Introducing New Technology & utilizing Industry 4.0 for 				
		Optimization of Energy Consumption.				
		Arresting Energy Wastage in Machine Operation Cycles				
		Capacity Downsizing of Energy Pumps /Motors				
		Optimization of Air conditioning plant				
		Optimization of Compressed Air Consumption				
		Office Lighting and Air Conditioning				

SUGGESTION SCHEME - CVBU PUNE

While submitting the suggestion please select appropriate Scheme (Special or Special Implemented) from the drop down menu and select Suggestion Scheme Office as Reciever

Prizes are available to be Won, to the Participaiting Divisions and Enganged in Energy Conservation! However, Minimum 40 Suggestions registration by the Beneficiary Division would be eligibility criteria. Please contact Suggestion Office for more details.

Energy Consertion teams from respective divisions may seek leverage of the same.

We look forward to your enthusiastic involvement and participation in this Unique Suggestion Scheme to make it a grand success

There is always Scope For Improvement.

THANK YOU

Mr. Milind Mench (Email: <u>milind.mench@tatamotors.com</u> /Mobile No. 7276097928) Mr. Manoj Badave (Email: <u>manoj.badave@tatamotors.com</u> /Mobile No. 9922437701) Mr. Mandar Pande (Email: <u>pande.mandar@tatamotors.com</u> /Mobile No. 8237002954)

TATA Motors Ltd., CVBU, Pune